lib.rs (21941B)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 | //! Procedural macro for the `arguments! { ... }`
//! macro-argument parser for seam macros.
//! TODO: Convert all `panic!(..)` calls to actual compiler errors.
#![feature(proc_macro_span)]
#![feature(proc_macro_diagnostic)]
use std::{collections::{HashMap, HashSet}, iter::Peekable};
use proc_macro::{self, Diagnostic, Span};
use proc_macro2::{token_stream::IntoIter, Delimiter, TokenStream, TokenTree};
use quote::{quote, ToTokens};
use syn::{self,
Expr, ExprRange, ExprLit,
Lit, Pat, PatOr,
RangeLimits,
};
#[derive(Clone, Copy)]
enum PositionTypes { Mandatroy, Optional, Rest }
#[derive(Clone, Copy)]
enum ParseState {
ArgumentPosition, //< `mandatory: ...', `optional: ...', `rest: ...'.
PositionPattern(PositionTypes), //< pattern for position or name.
}
#[derive(Clone, Copy, PartialEq, Eq)]
enum ArgumentKind {
Literal,
String,
Symbol,
Number,
Symbolic,
List,
Any,
None
}
#[derive(Clone)]
struct ArgumentProperties {
kind: ArgumentKind,
position_type: PositionTypes,
rust_type: TokenStream,
}
struct ArgumentStructTypes {
positional: HashMap<usize, ArgumentProperties>,
named: HashMap<String, ArgumentProperties>,
rest: ArgumentProperties,
}
/// Macro that generates an argument parser and builds a custom struct
/// holding provided arguments, given a schema and the list of arguments.
/// ### Example
/// ```ignore
/// let (parser, args) = arguments! { [¶ms]
/// mandatory(1..=3): literal,
/// mandatory(4): number fn(n: ParseNode) {
/// let n = extract_number(n)?;
/// let Ok(n): u32 = n.value.parse() else {
/// return Err("Argument must be an integer.");
/// }
/// if n % 2 == 0 {
/// Ok(())
/// } else {
/// Err("Integer must be even.")
/// }
/// },
/// optional("trailing"): literal["true", "false"],
/// rest: number
/// }?;
/// println!("first arg {:?}", args.number.1); // a literal (Node<'a>).
/// println!("second arg {:?}", args.number.2); // a literal (Node<'a>).
/// println!("third arg {:?}", args.number.3); // a literal (Node<'a>).
/// println!("fourth arg {:?}", args.number.4); // an even integer (Node<'a>).
/// if let Some(named) = args.trailing {
/// println!("named arg {:?}", named); // the literal "true" or "false".
/// }
/// for arg in args.rest {
/// println!("trailing arg: {:?}", arg); // trailing number args.
/// }
/// ```
#[proc_macro]
pub fn arguments(stream: proc_macro::TokenStream) -> proc_macro::TokenStream {
let stream: TokenStream = stream.into();
let stream = stream.into_iter().peekable();
let mut stream = stream.into_iter();
let struct_name: TokenStream = format!("MyArgs_{}", Span::call_site().line()).parse().unwrap();
// Parse the provided runtime argument vector.
let Some(args_vec) = stream.next().and_then(|tokens| match tokens {
TokenTree::Group(group) => Some(group
.stream()
.into_iter()
.collect::<Vec<TokenTree>>()
.as_slice()
.to_vec()),
_ => None,
}) else {
panic!("Argument vector not given.");
};
let params: TokenStream = quote! { #(#args_vec)* };
// Start building final source-code output.
let mut out: TokenStream = TokenStream::new();
out.extend(quote! {
let mut rules = crate::parse::macros::ArgRules::new();
});
// Initialize keeping track of the custom argument struct types.
let mut arg_struct = ArgumentStructTypes {
positional: HashMap::new(),
named: HashMap::new(),
rest: ArgumentProperties {
kind: ArgumentKind::None,
position_type: PositionTypes::Rest,
rust_type: quote! { () },
},
};
// Parse the argument schema.
let mut parse_state = ParseState::ArgumentPosition;
while let Some(token) = stream.next() {
match parse_state {
ParseState::ArgumentPosition => match token {
TokenTree::Ident(ident) => {
match ident.to_string().as_str() {
"mandatory" => {
parse_state = ParseState::PositionPattern(PositionTypes::Mandatroy);
continue;
},
"optional" => {
parse_state = ParseState::PositionPattern(PositionTypes::Optional);
continue;
},
"rest" => {
parse_state = ParseState::PositionPattern(PositionTypes::Rest);
continue;
},
_ => panic!("Invalid token: `{}`", ident.to_string()),
}
},
_ => panic!("Invalid token: `{}`", token),
},
// Parse `rest: ...`
ParseState::PositionPattern(PositionTypes::Rest) => {
// Check we consumed `:`
match token {
TokenTree::Punct(punct) => assert!(punct.as_char() == ':'),
_ => panic!("Invalid token: `{}`", token),
}
let argument_type = parse_argument_type(&mut stream, PositionTypes::Rest);
let arg_type = argument_type.source_code;
let code = quote! {{
let arg_type = #arg_type;
rules.register_remaining(arg_type);
}};
out.extend(code);
// Register argument struct type.
let rust_type = argument_type.properties.rust_type;
arg_struct.rest.kind = argument_type.properties.kind;
arg_struct.rest.rust_type = rust_type;
},
ParseState::PositionPattern(pos@PositionTypes::Mandatroy | pos@PositionTypes::Optional) => {
// Parse the pattern for matching argument positions.
let position_pattern = match token {
TokenTree::Group(group) => group.stream(),
t => {
let span: proc_macro::Span = t.span().unwrap();
Diagnostic::spanned(span, proc_macro::Level::Error, "expected a paranthesised pattern matching the argument position here.").emit();
panic!("expected a position pattern.");
},
};
// Skip `:`
let token = stream.next();
match token {
Some(TokenTree::Punct(punct)) => assert!(punct.as_char() == ':'),
_ => panic!("Invalid token: `{:?}`", token),
}
// Register the argument-position matcher.
let argument_type = parse_argument_type(&mut stream, pos);
let arg_type = argument_type.source_code;
let arg_pos = match pos {
PositionTypes::Mandatroy => quote! { crate::parse::macros::Arg::Mandatory },
PositionTypes::Optional => quote! { crate::parse::macros::Arg::Optional },
_ => unreachable!(),
};
let code = quote! {{
let arg_type = #arg_type;
let arg = #arg_pos(arg_type);
fn position_matcher<'b>(pattern: &Box<dyn crate::parse::macros::ArgMatcher + 'b>) -> bool {
match pattern.into() {
Some(#position_pattern) => true,
_ => false,
}
}
rules.register(position_matcher, arg);
}};
out.extend(code);
// Register argument struct type.
let rust_type = argument_type.properties.rust_type;
let rust_type = match pos {
PositionTypes::Mandatroy => quote! { #rust_type },
PositionTypes::Optional => quote! { Option<#rust_type> },
_ => unreachable!(),
};
// Take each possible argument position and register the type.
for position in parse_finite_pattern(position_pattern) {
match position {
StringOrInt::String(name) => arg_struct.named.insert(name, ArgumentProperties {
kind: argument_type.properties.kind.clone(),
position_type: pos,
rust_type: rust_type.clone(),
}),
StringOrInt::Int(offset) => arg_struct.positional.insert(offset, ArgumentProperties {
kind: argument_type.properties.kind.clone(),
position_type: pos,
rust_type: rust_type.clone(),
}),
};
}
},
};
// Handle switching back states, and any additional delimiting tokens.
match parse_state {
ParseState::PositionPattern(_) => {
// Finished parsing a pattern, skip the comma delimiting the next rule.
let token = stream.next();
// Expecting to find ',' at this point.
match match token {
Some(TokenTree::Punct(punct)) if punct.as_char() == ',' => Ok(()),
Some(t) => Err(t.span().unwrap()),
None => Ok(()),
} {
Ok(()) => {},
Err(span) => {
Diagnostic::spanned(span, proc_macro::Level::Error,
"Expected a comma after defining an argument rule.").emit();
panic!("expected a comma");
}
};
// Otherwise, switch back to trying tp parse a new rule.
parse_state = ParseState::ArgumentPosition;
},
_ => {},
};
}
// Build tuple type for arguments structure.
let tuple_len = *arg_struct.positional.keys().max().unwrap_or(&0);
let mut tuple_types = vec![quote! { () }; tuple_len + 1];
for i in 1..=tuple_len {
let props = arg_struct.positional.get(&i);
tuple_types[i] = match props {
Some(props) => props.rust_type.clone(),
None => quote! { () },
};
}
// Build named arguments struct fields.
let mut named_arguments: Vec<TokenStream> = vec![];
let mut named_types: Vec<TokenStream> = vec![];
let mut named_values: Vec<TokenStream> = vec![];
for (name, props) in arg_struct.named.iter() {
let rust_type = props.rust_type.clone();
let variable: proc_macro2::TokenStream = format!("r#{}", name).parse().unwrap();
named_types.push(rust_type);
named_arguments.push(variable);
match props.position_type {
PositionTypes::Mandatroy => named_values.push(quote! {{
let retrieved = *parser.get(#name)?;
retrieved
.clone()
.try_into()
.expect("node type-checked but unwrap failed")
}}),
PositionTypes::Optional => named_values.push(quote! {{
parser.get_optional(#name).map(|retrieved|
(*retrieved)
.clone()
.try_into()
.expect("node type-checked but unwrap failed"))
}}),
_ => unreachable!(),
}
}
// Generate code for extracting the values of the positional arguments.
let mut tuple_variables = vec![quote! { () }];
let mut tuple_variable_initializations = vec![];
for i in 1..=tuple_len {
let arg_num_name: TokenStream = format!("arg_num_{}", i).parse().unwrap();
let arg_type = tuple_types[i].clone();
tuple_variables.push(arg_num_name.clone());
let Some(props) = arg_struct.positional.get(&i) else { continue };
match props.position_type {
PositionTypes::Mandatroy => {
tuple_variable_initializations.push(quote! {
let #arg_num_name: #arg_type = {
let retrieved = *parser.get(#i)?;
retrieved
.clone()
.try_into()
.expect("node type-checked but unwrap failed")
};
});
},
PositionTypes::Optional => {
tuple_variable_initializations.push(quote! {
let #arg_num_name: #arg_type = parser
.get_optional(#i)
.map(|retrieved|
(*retrieved)
.clone()
.try_into()
.expect("node type-checked but unwrap failed"));
});
},
_ => unreachable!(),
}
}
// Generate code for extracting the trailing arguments.
let rest_rust_type = arg_struct.rest.rust_type;
let has_rest_capture = arg_struct.rest.kind != ArgumentKind::None;
let trailing_arguments = if has_rest_capture {
quote! {
{
parser.trailing
.iter()
.map(|arg| {
let arg: crate::parse::parser::ParseNode = (*arg).clone();
let retrieved: #rest_rust_type = arg.try_into().expect("node type-checked but unwrap failed");
retrieved
})
.collect()
}
}
} else {
quote! { () }
};
let rest_struct_decl = if has_rest_capture {
quote! {rest: Vec<#rest_rust_type>}
} else {
quote! {rest: ()}
};
// Assemble code that builds argument parser context and argument struct.
let out = out.into_iter();
quote! {
{
#(#out)*;
#[allow(non_camel_case_types)]
#[derive(Clone, Debug)]
struct #struct_name<'a> {
number: (#(#tuple_types),*,),
#(#named_arguments: #named_types,)*
#rest_struct_decl
}
let parser_result = crate::parse::macros::ArgParser::new(rules, &node, #params);
match parser_result {
Ok(parser) => {
#(#tuple_variable_initializations)*
#(let #named_arguments: #named_types = #named_values;)*
let rest = #trailing_arguments;
let args_struct = #struct_name {
number: (#(#tuple_variables),*,),
#(#named_arguments,)*
rest,
};
Ok((parser, args_struct)) // Returns the parser and args from the scope.
},
Err(e) => Err(e),
}
}
}.into()
}
#[derive(Clone, PartialEq, Eq, Hash)]
enum StringOrInt { String(String), Int(usize) }
/// Parse a subset of rust "patterns" that have a finite set of
/// values which will satisfy said pattern.
/// Returns a list of all values which may satisfy it.
/// Restrictions:
/// - exact match (`a`)
/// - ranges (`a..b`, `a..=b`);
/// - or-patterns (`expr1 | expr2`);
/// - values are strings or integers (`a: &str` or `a: usize`).
/// TODO: Re-emit the pattern converted as such:
/// `2..=4 | "hello" | 5` => `Int(2..=4) | String(&'static "hello") | Int(5)`
fn parse_finite_pattern(pat: TokenStream) -> HashSet<StringOrInt> {
let mut set = HashSet::new();
// Parse the input TokenStream into a syn::Pat
let expr = syn::parse::Parser::parse2(|input: syn::parse::ParseStream| {
Pat::parse_multi(input)
}, pat.into()).expect("failed");
// Recursively parse patterns.
fn parse_expr(expr: &Pat, set: &mut HashSet<StringOrInt>) {
match expr {
// Handle literals (integers or strings)
Pat::Lit(ExprLit { lit, .. }) => {
match lit {
Lit::Int(lit_int) => {
set.insert(StringOrInt::Int(lit_int.base10_parse::<usize>().unwrap()));
}
Lit::Str(lit_str) => {
set.insert(StringOrInt::String(lit_str.value()));
}
_ => {}
}
}
// Handle ranges
Pat::Range(ExprRange {
start: Some(start),
end: Some(end),
limits,
..
}) => {
// Parse the start and end as integers
if let (
Expr::Lit(ExprLit { lit: Lit::Int(start_lit), .. }),
Expr::Lit(ExprLit { lit: Lit::Int(end_lit), .. }),
) = (&**start, &**end) {
let start_val = start_lit.base10_parse::<usize>().unwrap();
let end_val = end_lit.base10_parse::<usize>().unwrap();
// Enumerate inclusive (`..=`) or exclusive (`..`) range.
match limits {
RangeLimits::HalfOpen(_) => {
for i in start_val..end_val {
set.insert(StringOrInt::Int(i));
}
},
RangeLimits::Closed(_) => {
for i in start_val..=end_val {
set.insert(StringOrInt::Int(i));
}
},
};
}
}
// Handle or-patterns
Pat::Or(PatOr { cases, .. }) => {
// For or-patterns, parse both the left and right expressions recursively
for case in cases {
parse_expr(case, set);
}
}
_ => panic!("Unsupported pattern.")
}
}
parse_expr(&expr, &mut set);
set
}
struct ArgumentType {
source_code: TokenStream,
properties: ArgumentProperties,
}
fn parse_argument_type(stream: &mut Peekable<IntoIter>, position_type: PositionTypes) -> ArgumentType {
use ArgumentKind as AK;
let (kind, rust_type, arg_type) = match stream.next() {
Some(TokenTree::Ident(ident)) => match ident.to_string().as_str() {
"literal" => (AK::Literal, quote! { crate::parse::parser::Node<'a> }, quote! { crate::parse::macros::ArgType::Literal }),
"string" => (AK::String, quote! { crate::parse::parser::Node<'a> }, quote! { crate::parse::macros::ArgType::String }),
"symbol" => (AK::Symbol, quote! { crate::parse::parser::Node<'a> }, quote! { crate::parse::macros::ArgType::Symbol }),
"number" => (AK::Number, quote! { crate::parse::parser::Node<'a> }, quote! { crate::parse::macros::ArgType::Number }),
"symbolic" => (AK::Symbolic, quote! { crate::parse::parser::Node<'a> }, quote! { crate::parse::macros::ArgType::Symbolic }),
"list" => (AK::List, quote! { Vec<crate::parse::parser::ParseNode<'a>> }, quote! { crate::parse::macros::ArgType::List }),
"any" => (AK::Any, quote! { crate::parse::parser::ParseNode<'a> }, quote! { crate::parse::macros::ArgType::Any }),
_ => panic!("Invalid argument type: `{}`", ident),
},
None => panic!("Unexpected EOF"),
_ => panic!("Invalid token type"),
};
let token = stream.peek().map(|token| token.clone());
let source_code = match token {
// Parse a list of potential pattern matches for argument.
Some(TokenTree::Group(group)) => match group.delimiter() {
Delimiter::Bracket | Delimiter::Parenthesis => {
stream.next(); // Consume the list.
let group = group.stream().into_iter();
// TODO: generate predicates based on syntax: "exact", /match/.
let predicates = group.map(|predicate| match predicate {
TokenTree::Literal(literal) => quote! {
crate::parse::macros::ArgPredicate::Exactly(String::from(#literal))
},
token => token.into_token_stream(),
});
quote! { #arg_type(vec![ #(#predicates)* ]) }
},
_ => panic!("Unexpected list delimiter"),
},
// Parse a function which matches the argument.
Some(TokenTree::Ident(ident)) if ident.to_string() == "fn" => {
stream.next(); // Consume the `fn` keyword.
// Consume the function argument list.
let fn_arguments = match stream.next() {
Some(TokenTree::Group(group)) => group.stream().into_iter(),
None => panic!("Unexpected EOF"),
_ => panic!("Unexpected token"),
};
// Consume the function body.
let Some(fn_body) = stream.next() else { panic!("Unexpected EOF") };
quote! {{
fn predicate<'tree>(#(#fn_arguments),*) -> Result<(), ExpansionError<'tree>> { #fn_body }
let arg_pred = crate::parse::macros::ArgPredicate::Satisfying(predicate);
#arg_type(vec![arg_pred])
}}
}
_ => quote! { #arg_type(vec![]) },
//_ => panic!("Unexpected tokens after argument type rules.")
};
ArgumentType {
source_code,
properties: ArgumentProperties {
kind,
position_type,
rust_type,
},
}
}
|