-- For example, a piecewise function:
f : 'A -> 'B -> 'C
f a b = piecewise do:
C a b, a == 1
C b a, b == 1
C 1 1, otherwise
-- or
piecewise {
x, p
y, q
z, otherwise
}
-- or write `cond' instead of `piecewise'
cond do:
x, p
y, q
z, otherwise
-- for more trivial branching, (with pattern matching)
-- Exactly the same as the previous f.
f : 'A -> 'B -> 'C
f a b = match (a, b) do:
(1, _) => C a b
(_, 1) => C b a
(_, _) => C 1 1
-- Or, the same again
f : (a : 'A) -> (b : 'B) -> 'C
f = curry f' where
f' : 'A * 'B -> 'C
f' (1, _) = C a b
f' (_, 1) = C a b
f' (_, _) = C 1 1
-- Again!
f : (a : 'A) -> (b : 'B) -> 'C
f 1 _ = C a b
f _ 1 = C b a
f _ _ = C 1 1
-- And again,
f : 'A -> 'B -> 'C
f a@1 b = C a b
f a b@1 = C b a
f 1 1 = C 1 1
-- Example of the special (syntactic) => operator
S = [ x : Nat => x > 3 ]
Z = filter f Any where f : Any -> Bool
f a = match a do:
x : Nat => x > 3 -- This is exactly like in S.
_ => False
-- This is how set builder notation works.
-- and how the uses of the => operators are related.
assert (S == Z)